The weathering of oil after the Deepwater Horizon oil spill: insights from the chemical composition of the oil from the sea surface, salt marshes and sediments
نویسندگان
چکیده
The oil released during the Deepwater Horizon (DWH) oil spill may have both shortand long-time impacts on the northern Gulf of Mexico ecosystems. An understanding of how the composition and concentration of the oil are altered by weathering, including chemical, physical and biological processes, is needed to evaluate the oil toxicity and impact on the ecosystem in the northern Gulf of Mexico. This study examined petroleum hydrocarbons in oil mousse collected from the sea surface and salt marshes, and in oil deposited in sediments adjacent to the wellhead after the DWH oil spill. Oil mousses were collected at two stations (OSS and CT, located 130 and 85 km away from the wellhead, respectively) in May 2010, and two sediment samples from stations SG and SC, within 6 km of the wellhead, in May 2011. We also collected oil mousse from salt marshes at Marsh Point (MP), Mississippi, 186 km away from the wellhead in July 2010. In these samples, n-alkanes, polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, BTEX (collective name of benzene, toluene, ethylbenzene and p-, m-, and o-xylenes), C3-benzenes and trace metals were measured to examine how the oil was altered chemically. The chemical analysis indicates that the oil mousses underwent different degrees of weathering with the pattern of OSS < CT < MP. This pattern is consistent with the projected oil mousse movement from the accident site to salt marshes. Also, the contents of trace metals Al, V, Cr, Fe, Mn, Ni, Co, Cu, As and Pb in the oil mousse generally increased along the way to the salt marshes, indicating that these trace metals were perhaps aggregated into the oil mousse during the transport. Petroleum hydrocarbon data reveal that the oil deposited in sediments underwent only light to moderate degradation one year after the DWH oil spill, as supported by the presence of short-chained n-alkanes (C10–C15), BTEX and C3-benzenes. The weathering of oil in sediment may result from biological degradation and dissolution, evidenced by the preferential loss of mid-chained 4 Address for correspondence: Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373-5015, USA. Content from this work may be used under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. 1 1748-9326/12/035302+14$33.00 c © 2012 IOP Publishing Ltd Printed in the UK Environ. Res. Lett. 7 (2012) 035302 Z Liu et al n-alkanes C16–C27, lower ratios of n-C17/Pr and n-C18/Ph, and preferential loss of PAHs relative to alkylated PAHs.
منابع مشابه
Evaluating bacterial community structures in oil collected from the sea surface and sediment in the northern Gulf of Mexico after the deepwater horizon oil spill
Bacterial community structures were evaluated in oil samples using culture-independent pyrosequencing, including oil mousses collected on sea surface and salt marshes during the Deepwater Horizon oil spill, and oil deposited in sediments adjacent to the wellhead 1 year after the spill. Phylogenetic analysis suggested that Erythrobacter, Rhodovulum, Stappia, and Thalassospira of Alphaproteobacte...
متن کاملPopulation Dynamics and Community Composition of Ammonia Oxidizers in Salt Marshes after the Deepwater Horizon Oil Spill
The recent oil spill in the Gulf of Mexico had significant effects on microbial communities in the Gulf, but impacts on nitrifying communities in adjacent salt marshes have not been investigated. We studied persistent effects of oil on ammonia-oxidizing archaeal (AOA) and bacterial (AOB) communities and their relationship to nitrification rates and soil properties in Louisiana marshes impacted ...
متن کاملPost-Deepwater Horizon Oil Spill Monitoring of Louisiana Salt Marshes Using Landsat Imagery
The Deepwater Horizon oil spill, the second largest marine oil spill in history, contaminated over a thousand kilometers of coastline in the Louisiana salt marshes and seriously threatened this valuable ecosystem. Measuring the impacts of the oil spill over the large and complex coast calls for the application of remote sensing techniques. This study develops a method for post-Deepwater Horizon...
متن کاملAnalysis of Hyperspectral Imagery for Oil Spill Detection Using SAM Unmixing Algorithm Techniques
Oil spill is one of major marine environmental challenges. The main impacts of this phenomenon are preventing light transmission into the deep water and oxygen absorption, which can disturb the photosynthesis process of water plants. In this research, we utilize SpecTIR airborne sensor data to extract and classify oils spill for the Gulf of Mexico Deepwater Horizon (DWH) happened in 2010. For t...
متن کاملDegradation and resilience in Louisiana salt marshes after the BP-Deepwater Horizon oil spill.
More than 2 y have passed since the BP-Deepwater Horizon oil spill in the Gulf of Mexico, yet we still have little understanding of its ecological impacts. Examining effects of this oil spill will generate much-needed insight into how shoreline habitats and the valuable ecological services they provide (e.g., shoreline protection) are affected by and recover from large-scale disturbance. Here w...
متن کامل